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Turbulent line vortices 

By E. R. HOFFMANN AND P. N. JOUBERT 
Department of Mechanical Engineering, University of Melbourne 

(Received 5 October 1962 and in revised form 18 February 1963) 

An attempt has been made to establish the laws governing the flow in a turbulent 
line vortex. Up to the present time theoretical solutions for laminar flow have 
been used for comparison with experimental results for turbulent flow to find 
an ‘eddy viscosity’ term and its variation with various parameters. An approach 
is developed along lines similar to the methods used in turbulent boundary- 
layer theory and is found to be reasonably successful as far as the work has 
proceeded. It is predicted by theory, and confirmed by experiment, that the 
circulation in the vortex is proportional to the logarithm of radius under certain 
conditions. For the present experimental conditions, the vortices are found to be 
completely independent of viscosity effects when the parameter WZ/K,  exceeds 
150, and above this value the experimental results may be correlated to give a 
universal distribution of circulation in the inner region of the vortex. Further 
experiments are necessary to verify and extend the results of these tests before 
any definite conclusions may be made regarding the circulation distribution in 
the outer core region of the vortex and the growth and development of the 
vortex. 

1. Introduction 
In  recent years the study of the vortex has produced many interesting papers, 

concerned mainly with the line vortex as produced by an aircraft wing and also 
the driven vortex of the Ranque-Hilsche tube. However, these papers have been 
mainly concerned with laminar flow and as the flow in the above-mentioned 
applications would usually be turbulent, it  was thought desirable to attempt a 
theoretical and experimental investigation of turbulent line vortices. In  this 
paper the line vortex will be considered as this is possibly the more basic of the 
vortex types. 

To the present time only one analysis has appeared for a line vortex with 
turbulent flow. This was due to Squire (1954). He considered the equations of 
motion for a fluid with both steady and fluctuating components of velocity and 
vorticity and obtained a solution which was similar in form to that for laminar 
flow except for the replacement of the kinematic viscosity by an eddy viscosity 
term. 

Newman (1959) and Dosanjh, Gasparek & Eskinazi (1962) carried out experi- 
ments on turbulent line vortices. The process used in analysing experimental 
results has been to compare the vortex velocity or pressure distributions with the 
laminar flow theory of Newman’s paper, the curves of this theory having been 



39 6 E.  R. Hoffmann and P. N .  Joubert 

plotted for varying kinematic viscosity. By this method en 'effective viscosity ' 
has been found for the vortex. However, .it has been noted that the theoretical 
(laminar) and experimental (turbulent) curves did not correspond over the 
major portion of the profile which is sheared. 

This discrepancy might well be explained by the fact that the mechanism of 
laminar and turbulent flows is entirely different-ven to the extent that a tur- 
bulent flow may be completely independent of viscosity. This method gave 
solutions which may be satisfactory for some engineering applications. 

2. Theoretical considerations 
( a )  Application of mixing-length theory to concentrically circular $ow 

Of some success in the study of turbulent flows have been the mixing length 
theories of Prandtl, von K&rm&n and Taylor, of which the simplest is that of 
Prendtl. All these theories predict the logarithmic law for the turbulent boundary 
layer, which can also be regarded as a consequence of similarity arguments. 

Townsend (1961) showed that the energy equation for a plane shear flow, 
when simplified, reduced to an equation which may be given a mixing-length 
interpretation. It is noted that for the case of a boundary layer, where little 
curvature of the flow exists, momentum is conserved in the mixing process. 
However, in the case of a vortex with concentrically circular flow, moment of 
momentum must be conserved. 

Consider a fluid lump at radius r;  having a mean radial velocity u, mean tan- 
gential velocity u, and fluctuating velocity components u', 11'. The Reynolds 
stress is given by 

where /3 is a correlation coefficient defined by 

7 == - p m  = -pp(u'")* (v'2)*, 

p = u'u'/(u'")" (v'2))". _ _ _  

Then 7 = { - p(vT)* r }  (P(u'")*/r). The quantity - p(v'2)* r is a fluctuating com- 
ponent of moment of momentum. Now assume that the element leaving the layer 
has the mean moment of momentum of that layer (i.e. - p w )  and this moment of 
momentum is conserved over a mixing length 1. The gradient of moment of 
momentum is assumed constant over the smalI distance 1. Then 

-p(v'Z)tr = Id( -pvr)/dr. 
- 

Hence 

01' 7/P = VT6, (1) 

where vT is an eddy viscosity and 5 = (dv/dr + u / r )  is the vorticity. An expression 
similar to this was given by Prandtl (1929). 

(b)  Solution of equation 
In  simple theories of free turbulent flows it is usually assumed that the eddy 
viscosity is constant. In  the present case this may be shown to be consistent with 
a more detailed argument, based on the assumption that the eddy viscosity 
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depends only on the local shear stress 7,  density p and radial position r .  Dimen- 

( 2 )  
sional analysis then leads to 

ipT = P ( ~ / p ) + r ,  

where H is a constant. If the ‘inertia’ terms in the equation of motion are 
neglected as being small compared with the Reynolds stresses, the equation of 
motion for the rotational flow reduces to 

a(rZu’v’)/ar = 0, 

or ~ / p  = -u’v’ = A / @ ,  (3) 

vT = .FA* = const. (4) 

~ 

where A = const. Combining ( 2 )  and (3) shows that 

Substituting (4) into ( 1 )  and using 5 = l / r  @K/&),  where K is the circulation, 
we then have aK/& = Ah/&%, 

Now A = ( 7 / p ) r 2  = const., 

giving A4 = v,r = K,  = const. K,  may be called the ‘friction circulation’ by 
analogy with the friction velocity as used in boundary layers. Note that K ,  is 
a local value and is constant for the logarithmic region of any given vortex. 
Equation ( 5 )  becomes K / K ,  = Z-l In r + const. 

Hence if the assumed mechanism is approximately valid for this flow, the cir- 
culation distribution will be logarithmic in regions where the inertia forces are 
negligible compared to the Reynolds stresses. A similar expression is obtained by 
using a modified form of von H$rm&n’s similarity hypothesis. Experiments 
have shown (6) to be correct. 

From (6) several interesting deductions may be made regarding the velocity 
and circulation distributions. I n  the logarithmic region of circulation, the 
velocity and circulation are given by 

or K = A: 2-l In r + const. ( 5 )  

(6) 

v cc r-llnr, K cc lnr,  
which gives r + 0 ,  v + - m  

r+co, h7ico. 

As both of these are impossible it is obvious that there is a change of mechanism 
of the flow at radii both less and greater than the logarithmic region so that we 
have tr = 0 a t  r = 0, and K = K O  at r = co for the free field. 

I n  the centre of the vortex there will be a region of solid body rotation so that 
K cc r2. This is the ‘eye’ of the vortex in which the shear stresses are small as 
there is little slip between concentric layers of fluid. In  this region, and a small 
region outside it, tangential inertia forces may be expected to dominate since 
there may be rapidly changing tangential velocities as well as changing radial 
velocities due to wake velocity defects. 

I n  the region of the tangential velocity peak, however, the tangential inertia 
forces are small but the shear stresses are large, so that it is in this region that the 
logarithmic distribution of circulation is to be expected. 
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Between the region of solid rotation and the logarithmic region may be 
expected some form of transition curve similar to the 'buffer' region in turbulent 
boundary layers. However, there are differences between the two cases ; with the 
vortex the shear stress is zero a t  the origin, whereas it is often a maximum at 
this position for a boundary layer. Another difference is the necessity of a viscous 
sublayer in a boundary layer due to the damping of the turbulent velocity fluctua- 
tions close to the wall. The vortex is a free flow without boundary restrictions 
and fluctuations are not necessarily damped in the region of the origin, even 
though the shear stress is zero due to the solid body rotation. 

If the inner region of the vortex is correlated by use of equation (6) then the 
outer-core region may vary with other flow parameters, as is the case with the 
turbulent boundary layer. 

( c )  Alternative solution by dimensional reasoning 
The authors are indebted to Mr A. E. Perry of the Mechanical Engineering 
Department for the following dimensional reasoning, which also leads to 
equation (6). 

It is found from experiment that by plotting v/vl versus r/rl ,  where vl and rl 
refer to a characteristic point in the velocity distribution (such as a point of 
maximum tangential velocity) all points for the inner region fall on one curve 
quite independently of the outer flow characteristics in which no simple simi- 
larity law was found. This indicates that no more than five variables are involved 
in the inner region and these wodd most likely be 

= f ( r >  r 1 7  p7 71), 

giving 

The above equation might be called the 'law of the vortex core ' by analogy with 
Prandtl's law of the wall with turbulent boundary layers. 

Near the centre of the vortex, radial outflow and high tangential velocity 
gradients were observed and the momentum equation therefore indicates high 
tangential inertia in this region. Further away from this central region these 
effects become small and so a considerable outer region of low inertia and hence 
constant shear moment or constant K ,  would exist. The radius of this central 
region of high inertia would be proportional to rl since a law of the core is 
applicable. 

The size of the core or the processes occurring inside of it should not influence 
the distribution of vorticity in the outer flow since the mechanisms are seen to 
be quite different in the two regions. Therefore a variable such as a s / a r  (=  rg) 
in the outer flow should not depend on rl but would still depend on K,  (i.e. the 
shear moment being transmitted) and perhaps other variables. Since a sudden 
discontinuity would not be expected between the outer flow and the region in 
which the law of the core is applicable, a small but finite blending region should 
exist where both conditions are satisfied, that is, from the law of the core, 

- - = -f'(~-) + function involving r l ,  ar "(" i  K ,  r1 r1 
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and hence f ’  must be given by Z - l ( r J r ) ,  where Z is a constant. Hence 

which has equation (5) as a solution, and since K / K ,  = f ( r / r l )  then 

K l r  
- - -In - +- const., K , - Z  rl 

which is similar to equation (6). The same result is obtained no matter what 
derivative of the circulation profile is taken as representing the shape of the 
region with r > rl .  

The above argument shows that a logarithmic law is at least possible from 
plausible physical interpretations of the mean velocity profile rather than refer- 
ring to detailed models of the turbulence mechanism or simply ‘curve fitting’ 
the results. The result implies a moment of momentum transfer theory but is 
arrived at  in a different way. 

Note that the above reasoning would imply a defect law of circulation, but 
not necessarily one which is universal in nature. What is implied by the above 
analysis, however, is that there is a universal inner region. 

( d )  Local equilibrium of the flow 
Townsend (1961) defines an equilibrium layer as ‘one in which there is equili- 
brium existing between the local rates of turbulent energy production and 
dissipation. The local rates of energy production and dissipation are so large, 
compared with the magnitude of the other terms in the energy equation, that the 
turbulent motion in this region is determined by the distribution of shear stress 
alone and is independent of conditions outside of the region. ’ 

It is intended to show that the logarithmic region of the turbulent vortex may 
be such a region of local equilibrium. 

The energy equation for the turbulent velocity components in the rotational 
direction is given by Traugott (1958) as 

where 
(i) the first term is the convective rate of change of 3 turbulent energy, 

(ii) the second term is the production of turbulent energy from the mean 
velocity gradient (a positive production is associated with a negative value of 
this term), 

(iii) the third term is the change in the turbulent energy due to the fluctuating 
pressure-velocity correlation or the work done against the fluctuating pressure 
gradients, 
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(iv) the fourth term is the change due to turbulent diffusion, 
(v) the fifth term is the change due to.the action of viscosity (viscous dis- 

sipation), 
Now if the flow has local equilibrium according to the conditions prescribed by 
Townsend, and dropping terms of small magnitude, the equation reduces to 

- 1  a 
r ar 

- u‘v‘ - - (vr)  = c ,  

where E is the local rate of conversion of turbulent energy to heat. 
By use of flow similarity arguments as in Townsend (1961) we write 

E = (?)%L;l and u- = a,(?), 
- _ _ _  

where 

These combined with the above equation give 

q2 = u12 + v’2 + w12. 

where 1 = c$L, may be interpreted as a form of ‘mixing length’. With 
__ 

r / p  = -u’Ivt = A/r2 ,  
the equation is I ah’lar = A* = const. 

If  now we assume I cc r equation (5) is obtained. 
In  other turbulent free flows, the mixing length is assumed constant at  any 

cross-section and proportional to the width of the flow. In  such flows streamlines 
are usually nearly parallel and velocity gradients small so that there is no 
characteristic length scale associated with the flow which is a function of position. 
The assumption of 1 = const. then gives results in reasonable agreement with 
experiment. 

However, in the present case, the streamlines are circular and hence the flow 
processes are likely to be largely dependent on the local curvature, especially 
near the vortex centre where the flow curvature varies rapidly. For this reason 
it may be justifiable to assume that 1 = 1 ( r ,  . . . ) and since no other characteristic 
length variables appear to be involved we may write I = S r ,  where S is a con- 
stant. If this is so, the region described by equation (5) is possibly an equilibrium 
layer. 

( e )  Choice of reference Circulation and radius 
The previous analyses show that a reference ‘friction circulation ’ KT must be 
used in correlating results. However, as yet no method for the determination of 
K,  has been devised and so some other reference is required. 

The obvious choice of a reference radius for correlation of the inner region 
would appear to be the radius ( r l )  at which the maximum tangential velocity 
occurs as this is the only distinctive radius for this region of the vortex. If this 
radius is used, then the correlating circulation must be that at  radius rl. This 
circulation shall be called K l .  However, it cannot be readily said that Kl  applies 
throughout the flow as does K,. 
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Dimensional reasoning gives 

k', = f(y1, P, 7 )  

since these are the only independent variables involved. This gives 

hY,/hFT = const., 

40 1 

_. . 
so that equation (6) becomes 

K 1  

h'l 

so that equation (6) becomes 
K 1  -sin - + 1 .  
- h'l - - (r:) ( 7 )  

The above reference values may not necessarily be the correct ones, but the 
same reasoning will apply to any values chosen within the inner region. It 
may be possible to set up an 'angular momentum integral' method for deter- 
mination of K,, similar to methods used in turbulent boundary layer work. 

(f ) Dimensional analysis and design of experiments 
As dimensional analysis has proved so useful in the analysis of other turbulent 
flows i t  might also be expected to be helpful in this case, especially for the 
designing of experiments on turbulent vortices. 

The main determining feature of a vortex is its circulation distribution and the 
external variables likely to affect the flow in the vortex are density, viscosity, 
free-field circulation, free-stream velocity, distance downstream from the point 
of generation of the vortex and radius from the axis of symmetry. Hence 

f , (K,K,,  W,r,Z,P,P) = 0, 

or 

which is a four parameter family. 

that the flow is independent of viscosity so that equation (8) becomes 
If the vortices are turbulent and fully developed then it might be expected 

To determine whether the flow has any dependency on viscosity is simply a 
matter of performing several experimental runs at a constant value of WZ/K,, 
but widely varying values of WZ/v.  If the plots of these results are similar (when 
reduced to suitable dimensionless form), the flow may be said to be independent 
of viscosity. 

An alternative, and simpler, method to show the independence of viscous 
effects, is to perform experiments over as wide a range of WZ/h', as possible 
and apply the following reasoning to the experimental results. In correlating 
the results of experiments, KT may not be known, and so it may be necessary to 
use some circulation which is proportional to, or is a function only of, KT. In  
using this correlating circulation K ,  and the corresponding radius rl in the 
equation 

36 Fluid Mech. 16 
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i t  will first be necessary to show that K,/Ko and r,/Z are independent of the 
effects of viscosity, this showing the independence of the inner region from 
viscous effects. 

For a distributive dependent variable equation (8) holds, and for a non- 
distributive dependent variable we have 

If equation (9) is to apply to the experimental results, i.e. Ko/v is not involvcd 
in K / K 0 ,  then it can be reasoned that 

and 

h'o 

z = either f (z) or f ($) . 
Now, when r1 and h', are used as independent variables equation (9) becomes 

which is a more suitable form for correlating experimental results. 
It is necessary to plot values of K,/Ko versus WZIK, and if one curve is pro- 

duced for various values of K0/v then v is not involved in the inner region. A 
similar procedure is followed for r J Z .  Hence the flows which are completely 
independent of viscosity may be found. 

3. The experimental investigation 
The aims were: 
(1)  to generate turbulent line vortices in a wind tunnel and to determine under 

(2) to determine whether the logarithmic region of circulation as predicted 

(3) to attempt to correlate results in the vortex inner region as is done for 

what conditions the flow is completely independent of viscosity; 

by theory is obtained in practice; 

turbulent boundary layers. 

(a)  Apparatus and experimental method 
The low-speed wind tunnel of the Royal Melbourne Institute of Technology was 
used for the experimental programme. The turbulence level is 0.23% at 65 ft./sec. 
The working section is parallel with approximately zero pressure gradient. 

A yaw probe similar to that described by Templin (1954) was used in con- 
junction with a traversing gear situated over the tunnel roof. Both were remotely 
controlled, the accuracies being k 0.1' in rotation, and k 0.001 in. in traverse. 
The yaw tube consisted of three Imm tubes soldered together, the two outer 
tubes being cut a t  an included angle of 80". For further details see Hoffmann 
(1962). 

A ' differential ' aerofoil was used to generate vortices. This consisted of a 6 in. 
chord wing spanning the tunnel vertically, the lower half being mounted at  an 
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angle of incidence equal and opposite to that of the upper half. The advantage 
of this arrangement is. that a stable single vortex is produced, whose position in 
the tunnel remained almost completely independent of velocity, angle of attack 
and distance downstream. 

The experiments were carried out for WZIK, values ranging from 64 to 511, 
these values being determined by the limitations of test-section length and the 
distance from the wing required for the vortex to be reasonably well formed. 

The range of experimental conditions are shown in table 1 below.? 

Run A', 
no. ft.2/sec 

1 6.46 
2 2-085 
3 5.75 
4 2.81 
5 2.14 
6 3.25 
7 2.67 
8 1.54 
9 1.083 

10 0.758 

h', 
ft.2/sec 
2.08 
0.755 
2.34 
1.01 
0.922 
0.875 
0.738 
0.588 
0.483 
0.418 

Kl 
ft./sec in. in. in. h'0 

rl TO - W 2 

82.7 59 0.485 12-0 0-322 
37-35 59 0.47 8.3 0.376 

105.6 59 0.48 8.5 0.407 
61.0 49.75 0.46 7.4 0.36 
57.2 59 0.43 6.7 0.414 
79.8 59 0.415 8.3 0-269 
81.7 59 0.52 7.2 0.277 
83.0 59 0.63 4-8 0.389 
76.7 59 0.72 3.7 0.446 
78.0 59 0.85 2.6 0-552 

r1 

TO 

0.0404 
0.0567 
0-0565 
0.0622 
0.0642 
0.050 
0-0722 
0-131 
0.194 
0-327 

- 
W Z  - 
f i 0  

63.5 
88.3 
89.7 
90 

111.5 
121 
151 
261 
348 
511 

TABLE 1. Values of the experimental variables. K denotes velocity multiplied by radius 

Two corrections have been applied to these results: (i) a correction for the roll 
angles of the yaw tube when in a velocity gradient; (ii) a displacement correction 
for position of the yaw tube from the vortex centre. 

( b )  Semi-logurithmic plots of circulution distribution 
It is predicted by equation (6) that the distribution of circulation is proportional 
to log-radius if the inertia terms in the equation of motion are negligible com- 
pared to the Reynolds stresses. When the corrected experimental results of 
circulation are plotted on semi-logarithmic graph paper i t  is found that all 
profiles have a straight-line region which occurs near and slightly beyond the 
point of maximum tangential velocity. A typical profile of circulation is shown 
in figure 1. The experimental results showed two basic types of circulation dis- 
tribution. This may be best seen by consideration of figure 2, where for some runs 
the extension of the log-line will cut the circulation line for solid body rotation 
(i.e. K cc r2) ,  whereas for other runs no intersection will occur. This effect has 
not been fully investigated, but it is almost certainly due to the effects of vis- 
cosity, as will be shown in a later section. 

( c )  Independence of viscosity 
The dimensional reasoning of 3 2 ( f )  shows that the condition for complete 
independence of viscosity in the inner region is that K1/K,, when plotted against 
WZ;/K,  for various values of WZlv should produce a single curve if v is not to 

t Complete experimental results are being held by the Editor. Those interested may 
obtain them upon request. 

36-2 
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Radius (in.) 

of circulation proportional to log-radius ( WZ/K,  = 51 1). 
FIGURE 1. Typical experimental circulation profile showing region 

( a )  log (radius) ( b )  log (radius) 

FIGURE 2 .  The two basic shapes of the circulation profile in the 
inner region obtained in the experiments. 

WZlK,  

profiles which are completely independent of the effects of viscosity. 
FIGURE 3. Graph of K,/K,  and 59 (r , /Z) versus WZ/K,  used to determine those 
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be involved, and similarly for r,/Z versus WZIK,. Hence the runs which are 
completely independent of viscosity (and so should produce universal distribu- 
tions of circulation in the inner region) may be found. 

In  figure 3 the above parameters are plotted and it is seen that four runs (and 
a fifth nearly) lie on a straight line. The remaining points are scattered. Hence 
it is to be expected that these five runs will be close to universal in the inner region 
when plotted as the parameters K / K ,  versus r / r l .  

0.1 0 3  1 *o 3.0 
1% rirl 

Symbol Run no. WZIKll 
0 6 121 
n 7 151 
0 8 261 
+ 9 348 
v 10 511 

FIGURE 4. The universal circulation distribution of the vortex inner region. 

Although the above test does not appear to be very rigorous in that there is a 
possibility that the points through which the line is drawn may not actually 
belong to the same curve, it is nevertheless encouraging that the circulation 
distributions corresponding to the above five points are close to being universal 
in the inner region, as shown in figure 4. 

The condition for complete independence of the effects of viscosity appears 
to be WZ/h',  > 150. This is unusual since it would be expected that the criterion 
should include a viscosity term. However, the viscous parameters WZlv and Ko/v 
do not appear to yield any criterion. It is possible that more detailed experi- 
mental results are required before any conclusion may be reached regarding the 
condition for complete independence of viscosity. 
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The quoted value of WZ/h'o = 150 may only apply to the present experi- 
mental conditions, since different methods of vortex generation would produce 
a different initial vortex. If the growth line of figure 3 is extrapolated to r l /Z  = 0, 
this point may be taken as the virtual origin for the production of the vortex. 
A criterion for WZIK, based on this virtual origin may be more realistic since it 
eliminates effects due to  the method of generation. 

K r - = 1 + 2.14 log,, - 
k', 1'1 

log rIr1 

FIGURE 5. The universal circulation distribution for fully turbulent 
vortices and approximate numerical values for the constants. 

( d )  Circulation and velocity projile of the universal inner region 
Referring to figure 5, which shows the universal inner region for fully turbulent 
vortices, i t  is seen that there are three parts into which this region may be separ- 
ated. These are 

(i) an 'eye' of solid body rotation given by 

K/K,  = 1-83(r/r,)2; (11)  

(ii) a transition between the solid body rotation and the logarithmic 
circulation; 

(iii) a region in which circulation varies logarithmically with radius and is 
given by 

(12) K / K ,  = 2.1410g10 (r /r l )  + 1. 

From the faired curve of the universal circulation plot it is possible to calculate 
the dimensionless velocity distribution for a fully turbulent vortex, since 

li v r  _ -  ---=.f(;). 
Kl  v l r l  

The resulting velocity distribution for the fully turbulent vortex is shown in 
figure 6 compared with the distribution for a laminar vortex, using the same 
co-ordinates. 
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In  figure 3, the curve connecting the points giving a universal distribution of 
circulation is, within experimental accuracy, close to a straight line. The five 
points considered were at constant distance downstream, so that these results 
imply that the size of the vortex eye, for given free-stream conditions, grows 
linearly with distance downstream from the origin of generation. Note that this 
behaviour is similar to that of laminar and turbulent jets. A laminar jet grows 
parabolically with distance (as does a laminar vortex) and a turbulent jet grows 
linearly with distance downstream. 

- 0  0.5 1 *o 1.5 2.0 2.5 

TIT1 

FIGURE 6. Comparison of laminar and turbulent velocity profiles in the inner region. 
-, Laminar; 0, turbulent. 

Hence if the free-stream conditions are known, the inner region of a fully 
developed turbulent vortex is predicted from figures 3 and 5, as may be done 
for a turbulent boundary layer. However, this may not be so for another method 
of generation, due to different conditions at generation. 

( e )  Outer core region 
It was stated in § 2 (c )  that the dimensional reasoning used to obtain a universal 
inner 'law of the core' implied that a circulation defect law would exist in the 
outer core region, though this need not necessarily be universal in nature. If 
the analogy between boundary layers and vortices is extended further, it  might 
be expected that the form of the defect law would be 

(KO - m/& = f ( r / ro) ,  

or, since in fully turbulent vortices it is shown that K ,  cc K,, 

where ro is the radius a t  which the circulation KO is achieved (or radius for 
99 yo KO, as this is more easily defined). 

There is difficulty in verifying this defect law due to the poor accuracy of 
measurements of circulation at large radii and consequent errors in the caI- 
culations. Also in this outer region there is an unexplained discontinuity which 
appears in the circulation distribution. In  this area the circulation remains 
approximately constant. At the present it is not known for certain whether this 
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bump is a property of the turbulent vortex or is due to incomplete rolling up of 
the trailing vortex at the plane of measurement or to some other cause. It may 
be possible that the flow has not developed sufficiently for a universal defect law 
t o  be formed. Due to lack of accurate experimental results and the above-men- 
tioned difficulties, the only attempt to find a defect law is that shown in figure 7 
plotted on the basis of equation (13). The two curves plotted are those for which 
the irregularity on the circulation distribution is the smallest. 

Further experimental work and closer investigation of the irregularity in the 
circulation distribution is necessary before any conclusion may be drawn 
regarding a circulation defect law. 

0.2 0.3 0 6  0.8 1 *O 
rho 

FIGURE 7. A possible circulation defect law plotted for two runs only. 
0 ,  Run no. 6; A ,  run no. 7. 

(f ) Development of a fully turbulent vortex 
Earlier it was noted that over the fully turbulent range of the parameter WZ/K,, 
the eye of the vortex grows linearly with distance downstream from the point 
of generation. It is interesting to investigate this linear growth further and see 
what limitations are placed on it. This is best done by plotting K,/Ko and rl/ro 
as a function of WZlK,  for the various fully turbulent vortices, as in figure 8. 

As the vortex strength K ,  will decay very slowly with distance downstream, 
it is seen that as the vortex progresses both K J K ,  and rl/ro increase with distance 
downstream, This means that as Z increases, so the radius at which maximum 
tangential velocity is realized approaches closer to the radius a t  which the free- 
stream circulation KO is obtained. 

It is tempting to extrapolate these curves and investigate their implications. 
If the linear growth curve is extrapolated to rl/ro = 1 along the path A, it  is 
a t  once obvious that a t  this point Kl/K,, must also be equal to unity and the 
vortex must be of the Rankine type. 
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However, it is highly unlikely that this type of vortex could be produced in 
practice. With this extrapolation, if we continue past Kl/Ko = 1.0, the vortex 
now has two radii at which the free-stream circulation, exists and hence it is 
unstable by Rayleigh's criterion for the stability of a rotational flow (Rayleigh 
1916). It is unlikely therefore that this path of growth is continued for values 
of WZ/Ko  much larger than the experimental upper value of 51 1. However, if 
this did occur, it  might give rise to a possible explanation of vortex instability. 

1 -0 
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v 0  200 -400 600 800 1000 1200 1400 

WZIKO 

FIGURE 8. Growth of a fully turbulent vortex and possible extrapolations 
t.0 higher values of WZlh-,. 

The second, and more likely, growth curve is the path B shown on figure 8. 
Here rJr0 and Kl/hro approach unity asymptotically for large values of WZ/Ko. 

Although the foregoing paragraphs are largely conjectured (since the results 
are extrapolated), the remarks may provide an avenue for further research into 
growth and stability of turbulent vortices. Obviously further experiments a t  
high values of W Z / K ,  are required before definite conclusions may be drawn. 

(9) Comparison with other experimental results 
In  figure 9 are plotted the circulation distribution of vortices from Newman 
(1959) and Timme (1957). The vortex from Newman's report was produced by 
a single wing and has a WZ/K,  value of approximately 290 and so is expected 
to be fully turbulent. It is seen that there is reasonable correspondence between 
this profile and those of the present work. As the original results were not avail- 
able, both profiles are scaled from the figures in the references quoted. 

Timme's vortex is a single vortex of a KArman vortex street and was taken 
from his figure 19. The circulation distribution was calculated by taking the 
origin at the centre of vorticity rather than the point of zero velocity. Once 
again reasonable correlation is obtained. Although this vortex is fully turbulent 
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(Timme reports an eddy viscosity of approximately 10v) the value of WZIK, is 
approximately 0.3. Apparently a different criterion exists for independence of 
viscosity in the BBrman vortex street. Z in this instance was taken to be the 
product of the free-stream velocity and the time from generation of the vortex. 

log rh-1 

FIGURE 9. Comparison of the present experimental results with those of Newman (1959) 
and Timme (1957). 0, Newman; A,  Timme (vortex street). 

4. Possibilities for future experimental work 
A t  several instances throughout this work, the necessity for further experi- 

mental work has been noted. As a guide a useful programme would be: 
(1) accurate measurements in the outer core region and a search for a possible 

circulation defect law; 
(2) experimental results are required a t  lower values of WB/K,  than in the 

present experiments to investigate the manner in which viscosity enters the 
problem; 

(3) tests at values of WZjKO greater than 500 are needed to study the behaviour 
of the vortex as it approaches the Rankine type and to see whether instability 
occurs near this condition; 
(4) more detailed results are needed in the present experimental range to 

verify the conclusions drawn in the present work; 
(5) development of a means for determining the friction circulation K,. 
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